Analyzing the anisotropic Hooke's law for children's cortical bone.
نویسندگان
چکیده
Child cortical bone tissue is rarely studied because of the difficulty of obtaining samples. Yet the preparation and ultrasonic characterization of the small samples available, while challenging, is one of the most promising ways of obtaining information on the mechanical behavior of non-pathological children׳s bone. We investigated children׳s cortical bone obtained from chirurgical waste. 22 fibula or femur samples from 21 children (1-18 years old, mean age: 9.7±5.8 years old) were compared to 16 fibula samples from 16 elderly patients (50-95 years old, mean age: 76.2±13.5 years old). Stiffness coefficients were evaluated via an ultrasonic method and anisotropy ratios were calculated as the ratio of C33/C11, C33/C22 and C11/C22. Stiffness coefficients were highly correlated with age in children (R>0.56, p<0.01). No significant difference was found between C11 and C22 for either adult or child bone (p>0.5), nor between C44 and C55 (p>0.5). We observe a transverse isotropy with C33>C22=C11>C44C55>C66. For both groups, we found no correlation between age and anisotropy ratios. This study offers the first complete analysis of stiffness coefficients in the three orthogonal bone axes in children, giving some indication of how bone anisotropy is related to age. Future perspectives include studying the effect of the structure and composition of bone on its mechanical behavior.
منابع مشابه
Compliance calibration for fracture testing of anisotropic biological materials.
The compliance technique has been used to monitor crack length during fracture and fatigue testing of materials. Difficulties arise when this technique is applied to anisotropic biological materials such as bone. In this tutorial, two different methods of analyzing compliance calibration data are described: the standard ASTM method and a new approach developed by the authors specifically for an...
متن کاملDetermination of Relationships between the Ultrasound Velocity and the Physical Properties of Bovine Cortical Bone Femur
Accurate measurements of physical characteristics of bone are essential for diagnosis, assessment of change following treatment, and therefore, indirectly, for evaluation of new forms of therapy. This is particularly true of osteoporosis and aging skeleton, in which fractures occur easily. Methods: In this study an ultrasonic system was set-up and calibrated on Plexiglas tubes of variable thick...
متن کاملRe-evaluating the toughness of human cortical bone.
Data for fracture in human humeral cortical bone are re-analyzed to assess the validity for this material of linear-elastic fracture mechanics (LEFM), which is the standard method of analyzing toughness and one basis for analyzing clinical data relating to bone quality. A nonlinear fracture model, which is based on representing the damage zone in the bone by a cohesive model, is calibrated agai...
متن کاملOn the Formulation of Constitutive Equations for Living Soft Tissues*
Soft living tissues deform freely under negligible stresses until a certain strain level is reached at which their stiffness increases sharply. Constitutive equations are developed that describe this kind of mechanical behavior and include Hooke's law as a limiting case. It is shown that, similar to Hooke's law, these constitutive equations assure uniqueness of solution for a broad class of bou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 49 شماره
صفحات -
تاریخ انتشار 2015